A direct bijection between permutations and a subclass of totally symmetric self- complementary plane partitions

نویسنده

  • Jessica Striker
چکیده

We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs. We also discuss the possible extension of this approach to finding a bijection between alternating sign matrices and all TSSCPPs. Finally, we remark on a new poset structure on TSSCPPs arising from this perspective which is a distributive lattice when restricted to permutation TSSCPPs. Résumé. Nous définissons une sous-classe de partitions planes totalement symétriques autocomplémentaires (TSSCPPs) que nous montrons est en bijection directe avec des matrices permutation. Cette bijection trace le numéro inverse de la permutation, la position du 1 dans la derniére colonne, et la position du 1 dans le dernier rayon aux statistiques naturelles sur cettes TSSCPPs. Aussi, nous discutons l’extension possible de cette approche pour trouver une bijection entre les matrices á signe alternat et toutes TSSCPPs. Finalement, nous remarquons sur une structure poset nouvelle sur les TSSCPPs se levant de cette perspective qui est une treillis distributif quand elle est limité aux TSSCPPs permutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijection between permutations and a subclass of TSSCPPs

We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs. We also discuss the possible extension of this approach to f...

متن کامل

A Connection between Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions

We give a lattice path interpretation for totally symmetric self-complementary plane partitions. This is a first step in solving the long standing problem of enumerating such plane partitions. Another outstanding problem in enumerative combinatorics is the search for a bijection between alternating sign matrices and totally symmetric self-complementary plane partitions. From the lattice path in...

متن کامل

A Solution to the Asm-dpp-tsscpp Bijection Problem in the Permutation Case

We give bijections between permutations and two types of plane partitions, descending (DPP) and totally symmetric self-complementary (TSSCPP). These bijections map the inversion number of the permutation to nice statistics on these DPPs and TSSCPPs. We also discuss the possible extension of this approach to finding bijections between alternating sign matrices and all DPPs and TSSCPPs.

متن کامل

The Equivalence between Enumerating Cyclically Symmetric, Self-Complementary and Totally Symmetric, Self-Complementary Plane Partitions

We prove that the number of cyclically symmetric, self-complementary plane partitions contained in a cube of side 2n equals the square of the number of totally symmetric, self-complementary plane partitions contained in the same cube, without explicitly evaluating either of these numbers. This appears to be the first direct proof of this fact. The problem of finding such a proof was suggested b...

متن کامل

The Poset Perspective on Alternating Sign Matrices

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or −1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self–complementary plane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013